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Describe a semigroup

• Traditional presentation of a semigroup S : 〈Q | R〉, where Q set of generators, and
relations R ⊆ Q+ × Q+. For instance:

〈a, b, c | ab = ba, bc = cb〉

S ' Q+/ρ, ρ the smallest congruence containing the relations R.

• Alternative: describing the action of that semigroup on some geometric object.



Action on a rooted tree
• Regular rooted tree on a finite alphabet Σ, i.e., Σ∗

• Semigroup S ↪→ End(Σ∗) acting faithfully on Σ∗, action: ∀g ∈ S ,w ∈ Σ∗ g ◦ w , and
length preserving: |g ◦ w | = |w |.
• The action is self-similar if:

g ◦ (aw) = (g ◦ a)(g ′ ◦ w) ∀w ∈ Σ∗, a ∈ Σ

for some g ′ ∈ S .

• g ′ ∈ S is called the restriction of g by a, denoted g · a.



Self-similar semigroups via transducers/automata
• Suppose that S is generated by a (finite) set Q.

If q · a ∈ Q for all a ∈ Σ, we may associate a finite automaton (Mealy automaton) with
set of states Q on the alphabet Σ and transitions:

• The adding machine: Q = {q, e}, Σ = {0, 1}

q ◦ (1101) = (q ◦ 1) (q · 1) ◦ (101)

q ◦ (1110) = 0 q ◦ 101

q ◦ (1101) = 0 q ◦ 101 = 0 (q ◦ 1) (q · 1) ◦ (01)

q ◦ (1101) = 0 q ◦ 101 = 0 0 q ◦ (01)

q ◦ (1101) = 0 q ◦ 101 = 0 0 q ◦ (01) = 0 0 (q ◦ 0) (q · 0) ◦ 1

q ◦ (1101) = 0 q ◦ 101 = 0 0 q ◦ (01) = 0 0 1 e ◦ 1 = 0011

• Summing by one unit in reverse binary: S = 〈q, e〉 is isomorphic to (N0,+).



Automata semigroups

• Mealy automaton (simply an automaton), is an alphabetical transducer:
A = 〈Q,Σ, δ, λ〉, with two (in general partial) functions:
• λ : Q × Σ→ Σ is the output (partial) function;
• δ : Q × Σ→ Q is the restriction (partial) function;

Transition can be depicted: q
a|b−−−→p, whenever λ(q, a) = b and δ(q, a) = p.

The automaton is deterministic: ∀a ∈ Σ, q ∈ Q there is at most one transition q
a|b−−−→p.

• Q acts (partially) on Σ on the left: λ(q, a) = b ⇒ q ◦ a = b, Σ acts (partially) on Q on
the right: δ(q, a) = p ⇒ q · a = p.

• Each state q of A acts (partially) on the free monoid Σ∗:

q ◦ (a1a2a3 . . . ak) = (q ◦ a1)[q · a1] ◦ (a2a3 . . . ak)

• This action on the rooted tree Σ∗ may be extended to Q∗ giving rise to a semigroup
S(A ), called an automaton semigroup.



Completeness and invertibility
• The action is full = completeness of the automaton ∀a ∈ Σ, q ∈ Q there is a transition

q
a|b−−−→p

• If the automaton is inverse deterministic: swap input with output, we obtain an
automaton A −1 that is still deterministic.
• In this case we may also consider the action of the states Q−1 on Σ∗, giving rise to partial

one-to-one action. In this case S(A ∪A −1) is an inverse semigroup.

Theorem (D’Angeli, R., Wächter, Semigr. Forum)

An automaton semigroup that is an inverse semigroup is also defined by an automaton that is
inverse deterministic.

• In case A is inverse deterministic and complete S(A ∪A −1) is a group (denoted by
G(A )).
• Automata groups: a source of important examples, like the Grigorchuk group

(intermediate growth (Milnor problem), Burnside problem).



Structure of an automaton (semi)group: open problems

• Very few is known: residually finite, word problem is decidable, conjugacy problem
undecidable (automata groups), order problem undecidable (automata groups)...

• Checking whether an automaton semigroup is finite is undecidable, for automata groups
is still open.

• Understanding the kind of (semi)group defined by an automaton is very difficult.

• There are not tools to disprove if a semigroup is NOT an automaton semigroup (a kind of
“pumping lemma”).



The standard presentation and the freeness problem

Checking whether an automaton group is free is very difficult, and there are few examples of
automata groups defining a free group.

The Freeness problem (Grigorchuk, Nekrashevych and Sushchansky )

Given an automaton group (complete, inverse deterministic automaton) A , is it decidable to
check whether G(A ) is free? What about S(A )?



The standard presentation and the freeness problem

• Given an automaton A = 〈Q,Σ, δ, λ〉, the (standard) presentation of the semigroup
S(A ) is 〈Q | R〉 where R ⊆ Q∗ × Q∗;
• we have a non-trivial relation (u, v) ∈ R (written also as u = v) if and only if

u ◦ w = v ◦ w for all w ∈ Σ∗ u 6= v

• Finding/describing a defining relation is also quite difficult

Emptiness of the defining relations for the standard presentation

• input: An automaton (semi)group A = 〈Q,Σ, δ, λ〉;
• output: Is the set R 6= ∅?



An intermediate step: positive relations

Theorem (D’Angeli, R., Wächter, Isr. J. Math.)

The following algorithmic problem:

• Input: An automaton group A (complete inverse-deterministic);

• Output: P(T ) = {u ∈ Q∗ : u = 1 in G(A )} 6= ∅?
is undecidable.

• Some connection with the dynamics in the boundary: the emptiness of P(T ) implies that
almost all orbital graphs in the boundary of the tree Σ∗ are either finite or acyclic.



Idea of the proof
Idea of the proof:

• Modifying a construction of Brunner and Sidki (rediscovered by Sunic and Ventura):
given a set of d × d matrices M over Z and a finite set of d-vectors V over Z it is
possibile to construct an automaton M s.t. S(M ) is isomorphic to the semigroup
generated by the affine transformations u 7→ v + Mu, M ∈M, v ∈ V ;

• By taking the matrices invertible, M becomes an automaton group;

• The identity correspondence problem is undecidable (Bell and Potapov):
{(u1, v1), . . . , (un, vn)} with ui , vi ∈ FG (A), is there a sequence i1, . . . , ik ∈ [1, n] such
that ui1 . . . uik = vi1 . . . vik = 1 in FG (A);

• Reduce the previous problem to the non-emptiness of P(M ) via the usual embedding of
FG (a, b) into SL2(Z):

ρ : a 7→
(

1 2
0 1

)
ρ : b 7→

(
1 0
2 1

)



Idea of the proof

• For each (ui , vi ) consider the 4× 4 matrix

Mi =

(
ρ(ui ) O2

O2 ρ(vi )

)
• Then it is possibile to prove that P(M ) 6= ∅ iff and only if there is a sequence of integers

i1, . . . , ik ∈ [1, n] such that
Mi1 . . .Mik = I

if and only if ui1 . . . uik = vi1 . . . vik = 1 in FG (A).
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Freeness for automata monoids

Theorem (D’Angeli, R., Wächter)

The following algorithmic problem:

• Input: An automaton monoid B (complete deterministic);

• Output: Is S(B) free?

is undecidable.

• It is possibile to show that the activity of B is cubic;
• Activity (notion introduced by S.Sidki): roughly speaking there is a state e acting like the

identity, and the activity is a measure of the growth of the number of paths not ending in
the state e;
• Here each state q 6= e has a unique cycle, cycles do not intersect: in this case the activity

is linear;



Sketch of the proof: existence of free monoid of any rank

• The proof heavily relies on the existence of a bounded activity automaton group whose
semigroup is a free monoid of rank sufficiently large;

• In our case: automaton group F ′ on Q ′ = {e, q1 . . . , qn, $1}, Σ′ = {0, 1, . . . , n + 1} with
S(F ′) free monoid of rank n + 1;

• We duplicate the dollar state obtaining a new automaton F on Q = {e, q1 . . . , qn, $1, $2}



Sketch of the proof: reduction to PCP
• In this way the defining relations of S(F) are the form:

w1$i1w2$i2 . . .w`$i`w`+1 = w1$j1w2$j2 . . .w`$j`w`+1

wi ∈ {e, q1, . . . , qn}∗
• By increasing the alphabet Σ′ = {0, . . . , n + 1} and complicating the action, we restrict

the kind of relations such that either we do not have relations or if there exist, there is
one of the form:

$1qi1 . . . qik $1 = $2qi1 . . . qik $2

where i1, . . . , ik is a solution to the PCP:

Theorem (E.Post)

The Post correspondence problem:

• Input: a finite family of pairs of words (u1, v1), . . . , (um, vm) on some alphabet Γ;

• Output: is there a set of indexes i1, . . . , ik such that ui1 . . . uik = vi1 . . . vik ?

is undecidable.

• So there is a defining relation iff there is a relation $1qi1 . . . qik $1 = $2qi1 . . . qik $2 iff there
is a solution i1, . . . , ik to the PCP, which is undecidable;
• It remains to prove that if you have a relation $1qi1 . . . qik $1 = $2qi1 . . . qik $2, the

semigroup defined by the automaton is not free;



Sketch of the proof: complicating the action via the dual

• Increasing the alphabet Σ′ to complicate the action of the automaton.

• Working with dual of an automaton helps to control the kind of defining relations:

• Thus by adding to the previous automaton ∂F another automaton ∂H we are able to
restrict the kind of relations



The automaton ∂H:
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Freeness for automata semigroups

The previous result heavily uses the existence of a state e acting like the identity, but it is
possibile to modify it to get

Theorem (D’Angeli, R., Wächter)

The following algorithmic problem:

• Input: An automaton semigroup B (complete deterministic);

• Output: Is S(B) free?

is undecidable.



The case of an automaton group

Trying to “embed” a Turing machine into an automaton that is complete and
inverse-deterministic (automaton group) is quite a challenge...

Open problem

Given an automaton group (complete, inverse deterministic automaton) A , are these two
problems undecidable:

• the semigroup S(A ) generated by the “positive” states Q is free?

• is the group G(A ) free?



Thank you!
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