On the presentation of (semi)groups defined by Mealy machines

Emanuele Rodaro

Department of Mathematics Politecnico di Milano

05/05/2021

Traditional presentation of a semigroup S: ⟨Q | R⟩, where Q set of generators, and relations R ⊆ Q⁺ × Q⁺. For instance:

$$\langle a, b, c \mid ab = ba, bc = cb
angle$$

 $S \simeq Q^+/\rho$, ρ the smallest congruence containing the relations R.

• Alternative: describing the action of that semigroup on some geometric object.

Action on a rooted tree

• Regular rooted tree on a finite alphabet $\Sigma,$ i.e., Σ^*

- Semigroup S → End(Σ*) acting faithfully on Σ*, action: ∀g ∈ S, w ∈ Σ* g ∘ w, and length preserving: |g ∘ w| = |w|.
- The action is self-similar if:

$$g \circ (\mathit{aw}) = (g \circ \mathit{a})(g' \circ w) \quad orall w \in \Sigma^*, \mathit{a} \in \Sigma$$

for some $g' \in S$.

• $g' \in S$ is called the restriction of g by a, denoted $g \cdot a$.

Self-similar semigroups via transducers/automata

Suppose that S is generated by a (finite) set Q.
 If q · a ∈ Q for all a ∈ Σ, we may associate a finite automaton (Mealy automaton) with set of states Q on the alphabet Σ and transitions:

$$(q) \xrightarrow{a \mid q \circ a} (q \cdot a)$$

• The adding machine: $Q = \{q, e\}$, $\Sigma = \{0, 1\}$

$$q\circ (1101)=(q\circ 1)\,(q\cdot 1)\circ (101)$$

$$q\circ(1110)=0 \ q\circ 101$$

$$(1101)$$
 0 (101) 0 (101) 0 (101)

Automata semigroups

- Mealy automaton (simply an automaton), is an alphabetical transducer: $\mathscr{A} = \langle Q, \Sigma, \delta, \lambda \rangle$, with two (in general partial) functions:
 - $\lambda: Q \times \Sigma \to \Sigma$ is the output (partial) function;
 - $\delta: Q \times \Sigma \rightarrow Q$ is the restriction (partial) function;

Transition can be depicted: $q \xrightarrow{a|b} p$, whenever $\lambda(q, a) = b$ and $\delta(q, a) = p$. The automaton is deterministic: $\forall a \in \Sigma, q \in Q$ there is at most one transition $q \xrightarrow{a|b} p$.

- Q acts (partially) on Σ on the left: λ(q, a) = b ⇒ q ∘ a = b, Σ acts (partially) on Q on the right: δ(q, a) = p ⇒ q ∘ a = p.
- Each state q of \mathscr{A} acts (partially) on the free monoid Σ^* :

$$q \circ (a_1 a_2 a_3 \dots a_k) = (q \circ a_1)[q \cdot a_1] \circ (a_2 a_3 \dots a_k)$$

This action on the rooted tree Σ* may be extended to Q* giving rise to a semigroup S(A), called an automaton semigroup.

Completeness and invertibility

- The action is full = completeness of the automaton $\forall a \in \Sigma, q \in Q$ there is a transition $q \xrightarrow{a|b}{\longrightarrow} p$
- If the automaton is inverse deterministic: swap input with output, we obtain an automaton 𝒜⁻¹ that is still deterministic.
- In this case we may also consider the action of the states Q⁻¹ on Σ*, giving rise to partial one-to-one action. In this case S(𝔄 ∪ 𝔄⁻¹) is an *inverse semigroup*.

Theorem (D'Angeli, R., Wächter, Semigr. Forum)

An automaton semigroup that is an inverse semigroup is also defined by an automaton that is inverse deterministic.

- In case \mathscr{A} is inverse deterministic and complete $\mathcal{S}(\mathscr{A} \cup \mathscr{A}^{-1})$ is a group (denoted by $\mathcal{G}(\mathscr{A})$).
- Automata groups: a source of important examples, like the Grigorchuk group (intermediate growth (Milnor problem), Burnside problem).

Structure of an automaton (semi)group: open problems

- Very few is known: residually finite, word problem is decidable, conjugacy problem undecidable (automata groups), order problem undecidable (automata groups)...
- Checking whether an automaton semigroup is finite is undecidable, for automata groups is still open.
- Understanding the kind of (semi)group defined by an automaton is very difficult.
- There are not tools to disprove if a semigroup is NOT an automaton semigroup (a kind of "pumping lemma").

Checking whether an automaton group is free is very difficult, and there are few examples of automata groups defining a free group.

The Freeness problem (Grigorchuk, Nekrashevych and Sushchansky)

Given an automaton group (complete, inverse deterministic automaton) \mathscr{A} , is it decidable to check whether $\mathcal{G}(\mathscr{A})$ is free? What about $\mathcal{S}(\mathscr{A})$?

The standard presentation and the freeness problem

- Given an automaton $\mathscr{A} = \langle Q, \Sigma, \delta, \lambda \rangle$, the (standard) presentation of the semigroup $\mathcal{S}(\mathscr{A})$ is $\langle Q \mid R \rangle$ where $R \subseteq Q^* \times Q^*$;
- we have a non-trivial relation $(u, v) \in R$ (written also as u = v) if and only if

$$u \circ w = v \circ w$$
 for all $w \in \Sigma^*$ $u \neq v$

• Finding/describing a defining relation is also quite difficult

Emptiness of the defining relations for the standard presentation

- input: An automaton (semi)group $\mathscr{A} = \langle Q, \Sigma, \delta, \lambda \rangle$;
- **output**: Is the set $R \neq \emptyset$?

Theorem (D'Angeli, R., Wächter, Isr. J. Math.)

The following algorithmic problem:

• Input: An automaton group A (complete inverse-deterministic);

• Output:
$$\mathcal{P}(\mathcal{T}) = \{ u \in Q^* : u = 1 \text{ in } \mathcal{G}(\mathscr{A}) \} \neq \emptyset$$
?

is undecidable.

• Some connection with the dynamics in the boundary: the emptiness of $\mathcal{P}(\mathcal{T})$ implies that almost all orbital graphs in the boundary of the tree Σ^* are either finite or acyclic.

Idea of the proof

Idea of the proof:

- Modifying a construction of Brunner and Sidki (rediscovered by Sunic and Ventura): given a set of *d* × *d* matrices *M* over Z and a finite set of *d*-vectors *V* over Z it is possibile to construct an automaton *M* s.t. *S*(*M*) is isomorphic to the semigroup generated by the affine transformations *u* → *v* + *Mu*, *M* ∈ *M*, *v* ∈ *V*;
- By taking the matrices invertible, *M* becomes an automaton group;
- The identity correspondence problem is undecidable (Bell and Potapov):
 {(u₁, v₁),..., (u_n, v_n)} with u_i, v_i ∈ FG(A), is there a sequence i₁,..., i_k ∈ [1, n] such
 that u_{i1}...u_{ik} = v_{i1}...v_{ik} = 1 in FG(A);
- Reduce the previous problem to the non-emptiness of \$\mathcal{P}(\mathcal{M})\$ via the usual embedding of \$FG(a, b)\$ into \$SL_2(\mathbb{Z})\$:

$$\rho: \mathbf{a} \mapsto \left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right) \quad \rho: \mathbf{b} \mapsto \left(\begin{array}{cc} 1 & 0 \\ 2 & 1 \end{array}\right)$$

• For each (u_i, v_i) consider the 4 \times 4 matrix

$$M_i = \left(egin{array}{cc}
ho(u_i) & O_2 \ O_2 &
ho(v_i) \end{array}
ight)$$

• Then it is possibile to prove that $\mathcal{P}(\mathcal{M}) \neq \emptyset$ iff and only if there is a sequence of integers $i_1, \ldots, i_k \in [1, n]$ such that

$$M_{i_1}\ldots M_{i_k}=I$$

if and only if $u_{i_1} \ldots u_{i_k} = v_{i_1} \ldots v_{i_k} = 1$ in FG(A).

Freeness for automata monoids

Theorem (D'Angeli, R., Wächter)

The following algorithmic problem:

- Input: An automaton monoid \mathscr{B} (complete deterministic);
- Output: Is $S(\mathcal{B})$ free?

is undecidable.

- It is possibile to show that the activity of ${\mathscr B}$ is cubic;
- Activity (notion introduced by S.Sidki): roughly speaking there is a state *e* acting like the identity, and the activity is a measure of the growth of the number of paths not ending in the state *e*;
- Here each state q ≠ e has a unique cycle, cycles do not intersect: in this case the activity is linear;

Sketch of the proof: existence of free monoid of any rank

- The proof heavily relies on the existence of a bounded activity automaton group whose semigroup is a free monoid of rank sufficiently large;
- In our case: automaton group \mathcal{F}' on $Q' = \{e, q_1 \dots, q_n, \$_1\}$, $\Sigma' = \{0, 1, \dots, n+1\}$ with $\mathcal{S}(\mathcal{F}')$ free monoid of rank n + 1;
- We duplicate the dollar state obtaining a new automaton \mathcal{F} on $Q = \{e, q_1 \dots, q_n, \$_1, \$_2\}$

Sketch of the proof: reduction to PCP

• In this way the defining relations of $\mathcal{S}(\mathcal{F})$ are the form:

$$w_1 \$_{i_1} w_2 \$_{i_2} \dots w_\ell \$_{i_\ell} w_{\ell+1} = w_1 \$_{j_1} w_2 \$_{j_2} \dots w_\ell \$_{j_\ell} w_{\ell+1}$$

 $w_i \in \{e, q_1, \ldots, q_n\}^*$

 By increasing the alphabet Σ' = {0,..., n + 1} and complicating the action, we restrict the kind of relations such that either we do not have relations or if there exist, there is one of the form:

$$a_1q_{i_1}\ldots q_{i_k}a_1 = a_2q_{i_1}\ldots q_{i_k}a_2$$

where i_1, \ldots, i_k is a solution to the PCP:

Theorem (E.Post)

The Post correspondence problem:

- Input: a finite family of pairs of words $(u_1, v_1), \ldots, (u_m, v_m)$ on some alphabet Γ ;
- Output: is there a set of indexes i_1, \ldots, i_k such that $u_{i_1} \ldots u_{i_k} = v_{i_1} \ldots v_{i_k}$?

is undecidable.

• So there is a defining relation iff there is a relation $\xi_{1,\alpha}$, $\alpha_{2,\beta} = \xi_{2,\alpha}$, $\alpha_{3,\beta} = \xi_{3,\alpha}$

Sketch of the proof: complicating the action via the dual

- Increasing the alphabet Σ^\prime to complicate the action of the automaton.
- Working with dual of an automaton helps to control the kind of defining relations:
- Thus by adding to the previous automaton $\partial \mathcal{F}$ another automaton $\partial \mathcal{H}$ we are able to restrict the kind of relations

The automaton $\partial \mathcal{H}$:

The previous result heavily uses the existence of a state e acting like the identity, but it is possibile to modify it to get

Theorem (D'Angeli, R., Wächter)

The following algorithmic problem:

- Input: An automaton semigroup \mathscr{B} (complete deterministic);
- Output: Is $S(\mathcal{B})$ free?

is undecidable.

Trying to "embed" a Turing machine into an automaton that is complete and inverse-deterministic (automaton group) is quite a challenge...

Open problem

Given an automaton group (complete, inverse deterministic automaton) \mathscr{A} , are these two problems undecidable:

- the semigroup $\mathcal{S}(\mathscr{A})$ generated by the "positive" states Q is free?
- is the group $\mathcal{G}(\mathscr{A})$ free?

Thank you!